Subreducts of modules over commutative rings

Michał Stronkowski

Warsaw University of Technology

Tampere, June 8th 2007

Subreducts of modules

Definition

Algebra (A, Ω) is a reduct of a module (A, +, 0, R) if for each $\omega \in \Omega$ there are $r_i^{\omega} \in R$ such that

$$\omega(x_1,\ldots,x_n)=r_1^{\omega}x_1+\cdots+r_n^{\omega}x_n.$$

A subreduct is a subalgebra of a reduct.

(4) ほう (4) ほう

Subreducts of modules

Definition

Algebra (A, Ω) is a reduct of a module (A, +, 0, R) if for each $\omega \in \Omega$ there are $r_i^{\omega} \in R$ such that

$$\omega(x_1,\ldots,x_n)=r_1^{\omega}x_1+\cdots+r_n^{\omega}x_n.$$

A subreduct is a subalgebra of a reduct.

Fact

Each subreduct of a module over a commutative ring is entropic, i.e. it satisfies all identities

$$\mu(\nu(x_1^1,\ldots,x_n^1),\ldots,\nu(x_1^m,\ldots,x_n^m)) \\\approx \nu(\mu(x_1^1,\ldots,x_1^m),\ldots,\mu(x_n^1,\ldots,x_n^m))$$

Cancellative algebras

Cancellation Law

$$\omega(x_1,\ldots,y,\ldots,x_n)\approx\omega(x_1,\ldots,z,\ldots,x_n)\longrightarrow y\approx z$$

э

伺 と く き と く きょ

$$\omega(x_1,\ldots,y,\ldots,x_n)\approx\omega(x_1,\ldots,z,\ldots,x_n)\longrightarrow y\approx z$$

Cancellative algebras:

コマン く ヨマ く

3 x 3

$$\omega(x_1,\ldots,y,\ldots,x_n)\approx\omega(x_1,\ldots,z,\ldots,x_n)\longrightarrow y\approx z$$

Cancellative algebras:

э

$$\omega(x_1,\ldots,y,\ldots,x_n)\approx\omega(x_1,\ldots,z,\ldots,x_n)\longrightarrow y\approx z$$

Cancellative algebras:

- (Quasi)Groups,
- **2** $(R \{0\}, \cdot)$, where R is an integral domain,

伺 ト イヨト イヨト

$$\omega(x_1,\ldots,y,\ldots,x_n)\approx\omega(x_1,\ldots,z,\ldots,x_n)\longrightarrow y\approx z$$

Cancellative algebras:

- Quasi)Groups,
- **2** $(R \{0\}, \cdot)$, where R is an integral domain,

③ Let *M* be a *R*-module and $r_1, \ldots, r_n \in R - \bigcup_{m \in M} Ann(m)$. If

$$\omega(m_1,\ldots,m_n)=r_1m_1+\ldots+r_nm_n,$$

then the algebra (M, ω) is cancellative.

An algebra (A, Ω) is a polyquasigroup if each translation

$$x \mapsto \omega(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_n),$$

where $a_i \in A$ and $\omega \in \Omega$, is bijective.

伺 ト イヨト イヨト

An algebra (A, Ω) is a polyquasigroup if each translation

$$x \mapsto \omega(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_n),$$

where $a_i \in A$ and $\omega \in \Omega$, is bijective.

Theorem (Sholander, Ježek, Kepka, Stronkowski)

Let \mathcal{V} be a variety of entropic algebras. If an algebra from \mathcal{V} is cancellative, then it is a subalgebra of a polyquasigroup from \mathcal{V} .

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a subreduct of a module over a commutative ring.

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a subreduct of a module over a commutative ring.

Proof.

 Embed a cancellative mode (A, Ω) into a mode polyquasigroup (B, Ω).

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a subreduct of a module over a commutative ring.

Proof.

- Embed a cancellative mode (A, Ω) into a mode polyquasigroup (B, Ω).
- **2** For a basic operation ω of an arity n > 1 define

$$\omega_1(x_1, \dots, x_n) = y \quad \text{iff} \quad \omega(y, x_2, \dots, x_n) = x_1 \quad \text{and} \\ \omega_n(x_1, \dots, x_n) = y \quad \text{iff} \quad \omega(x_1, x_2, \dots, y) = x_n$$

proof, continued.

O Then the operation

$$M(x, y, z) = \omega(\omega_1(x, z, \dots, z), y, \dots, y, \omega_n(\omega_1(y, z, \dots, z), y, \dots, y, z))$$

is Mal'cev and (B, Ω, M) is a Mal'cev mode equivalent to an affine space.

In fact the same proof gives us

In fact the same proof gives us

Theorem

Each entropic cancellative algebra with idempotent element is a subreduct of a module over a commutative ring.

In fact the same proof gives us

Theorem

Each entropic cancellative algebra with idempotent element is a subreduct of a module over a commutative ring.

And

Theorem

Each entropic cancellative algebra is quasi-affine.

We will need the following Szendrei identities

$$\omega(\omega(x_1^1,\ldots,x_n^1),\ldots,\omega(x_1^n,\ldots,x_n^n)) \approx \omega(\omega(\pi(x_1^1),\ldots,\pi(x_n^1)),\ldots,\omega(\pi(x_1^n),\ldots,\pi(x_n^n))),$$

where π is a transposition of a pair of variables x_i^j and x_i^j .

We will need the following Szendrei identities

$$\omega(\omega(x_1^1,\ldots,x_n^1),\ldots,\omega(x_1^n,\ldots,x_n^n)) \\ \approx \omega(\omega(\pi(x_1^1),\ldots,\pi(x_n^1)),\ldots,\omega(\pi(x_1^n),\ldots,\pi(x_n^n))),$$

where π is a transposition of a pair of variables x_i^j and x_i^j .

A semiring is a ring without subtraction

Approach through semimodules

- A semiring is a ring without subtraction
- A semimodule is a module without subtraction

Approach through semimodules

- A semiring is a ring without subtraction
- A semimodule is a module without subtraction

Theorem (Ježek, Kepka, Stronkowski)

Let A be an entropic algebra without constants, satisfying all Szendrei identities and such that each its basic operation of arity at least 2 is onto. Then A is a subreduct of a semimodule over a commutative semiring.

Approach through semimodules

- A semiring is a ring without subtraction
- A semimodule is a module without subtraction

Theorem (Ježek, Kepka, Stronkowski)

Let A be an entropic algebra without constants, satisfying all Szendrei identities and such that each its basic operation of arity at least 2 is onto. Then A is a subreduct of a semimodule over a commutative semiring.

Remark

Entropic polyquasigroups without constants satisfy assumptions of the previous theorem.

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

Let A be cancellative and entropic

Case when A has constants falls into earlier Theorem, so we assume that A does not have any constant

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

- Case when A has constants falls into earlier Theorem, so we assume that A does not have any constant
- **2** We embed A into an entropic polyquasigroup B

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

- Case when A has constants falls into earlier Theorem, so we assume that A does not have any constant
- **2** We embed A into an entropic polyquasigroup B
- Next embed B into a semimodule N over a commutative semiring

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

- Case when A has constants falls into earlier Theorem, so we assume that A does not have any constant
- **2** We embed A into an entropic polyquasigroup B
- Next embed B into a semimodule N over a commutative semiring
- One may prove that, by cancellativity of B, the semimodule N is +-cancellative and thus

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over a commutative ring.

Proof.

- Case when A has constants falls into earlier Theorem, so we assume that A does not have any constant
- **2** We embed A into an entropic polyquasigroup B
- Next embed B into a semimodule N over a commutative semiring
- One may prove that, by cancellativity of B, the semimodule N is +-cancellative and thus
- embeds into a module over a commutative ring

Thank you for your attention :-)

⇒ >