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Subreducts of modules

Definition
Algebra (A, Q) is a reduct of a module (A, +,0, R) if for each
w € 2 there are r¥ € R such that

w w
WXty .oy Xn) =1x1 4o+ 1P xp.

A subreduct is a subalgebra of a reduct.
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Subreducts of modules

Algebra (A, Q) is a reduct of a module (A, +,0, R) if for each
w € 2 there are r¥ € R such that

w w
WXty .oy Xn) =1x1 4o+ 1P xp.

A subreduct is a subalgebra of a reduct.

Each subreduct of a module over a commutative ring is entropic,
i.e. it satisfies all identities

w(r(xi, .. x), (X))

~v(p(xd, . X)Xk, x™)

v
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Cancellative algebras

Cancellation Law

WXLy oy Ve Xn) R W(X1y ey 2y Xn) — Y R Z
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Cancellative algebras

Cancellation Law

WXLy oy Ve Xn) R W(X1y ey 2y Xn) — Y R Z

Cancellative algebras:
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Cancellative algebras

Cancellation Law

WXLy oy Ve Xn) R W(X1y ey 2y Xn) — Y R Z

Cancellative algebras:

@ (Quasi)Groups,
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Cancellative algebras

Cancellation Law

WXLy oy Ve Xn) R W(X1y ey 2y Xn) — Y R Z

Cancellative algebras:
@ (Quasi)Groups,
@ (R —{0},-), where R is an integral domain,
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Cancellative algebras

Cancellation Law

WXLy oy Ve Xn) R W(X1y ey 2y Xn) — Y R Z

Cancellative algebras:
@ (Quasi)Groups,
@ (R —{0},-), where R is an integral domain,
© Let M be a R-module and r1,...,r, € R —J,,cps Ann(m). If

w(mi,...,mp) =rnm + ...+ rpmp,

then the algebra (M, w) is cancellative.
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Polyquasigroups

An algebra (A, Q) is a polyquasigroup if each translation
X = Ld(a]_, sy @1, X, 8j41y - an):

where a; € A and w € €, is bijective.
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Polyquasigroups

An algebra (A, Q) is a polyquasigroup if each translation
X = w(ala ceey @1, X, Ai4 1y - - e an):

where a; € A and w € €, is bijective.

Theorem (Sholander, Jezek, Kepka, Stronkowski)

Let V be a variety of entropic algebras. If an algebra from V is
cancellative, then it is a subalgebra of a polyquasigroup from V.
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Romanowska-Smith theorem

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a
subreduct of a module over a commutative ring.
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Romanowska-Smith theorem

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a
subreduct of a module over a commutative ring.

v

@ Embed a cancellative mode (A, Q) into a mode
polyquasigroup (B, ).

Ol

’
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Romanowska-Smith theorem
Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a
subreduct of a module over a commutative ring.

@ Embed a cancellative mode (A, Q) into a mode
polyquasigroup (B, Q).

@ For a basic operation w of an arity n > 1 define

wilxt,...,xn) =y iff w(y,x,...,xp) =x1 and

wn(X1, -+ Xn) =y I w(x, X2, y) = X

Ol

’
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Romanowska-Smith theorem, continued

proof, continued.

© Then the operation
M(x,y,z) = w(wi(x,z,...,2),y,..., ¥,
wn(wl(y727-"72)7y7~”7.y7z))

is Mal'cev and (B, 2, M) is a Mal'cev mode equivalent to an
affine space.

Ol

y
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And if we drop idempotency?

In fact the same proof gives us
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And if we drop idempotency?

In fact the same proof gives us

Each entropic cancellative algebra with idempotent element is a
subreduct of a module over a commutative ring.
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And if we drop idempotency?

In fact the same proof gives us

Each entropic cancellative algebra with idempotent element is a
subreduct of a module over a commutative ring.

And

Each entropic cancellative algebra is quasi-affine. \
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Szendrei identities

We will need the following Szendrei identities

ww(xd,. .. xY), . wd, . x™)

~ w(w(ﬂ'(xll), . ,TI'(X,})), coow(m(x)), . m(x)),

where 7 is a transposition of a pair of variables xj’ and xf
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Szendrei identities

We will need the following Szendrei identities

ww(xd,. .. xY), . wd, . x™)

~ w(w(ﬂ'(xll), . ,TI'(X,})), coow(m(x)), . m(x)),

where 7 is a transposition of a pair of variables xj’ and xf

RS | B
Example: 7m: x3 < Xxj
/Lr\ /C'L)\
1,1 1.2 .2 .2 3 3 1 .1 2 2 2.1 .3 .3
X{ X3 X3 X{ X5 X3 X5 X3 X{ X3 Xp Xy X5 X3 X5 X3
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Approach through semimodules

Q A semiring is a ring without subtraction
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Approach through semimodules

Q A semiring is a ring without subtraction

@ A semimodule is a module without subtraction
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Approach through semimodules

Q A semiring is a ring without subtraction

@ A semimodule is a module without subtraction

Theorem (Jezek, Kepka, Stronkowski)

Let A be an entropic algebra without constants, satisfying all
Szendrei identities and such that each its basic operation of arity
at least 2 is onto. Then A is a subreduct of a sesmimodule over a
commutative semiring.
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Approach through semimodules

Q A semiring is a ring without subtraction

@ A semimodule is a module without subtraction

Theorem (Jezek, Kepka, Stronkowski)

Let A be an entropic algebra without constants, satisfying all
Szendrei identities and such that each its basic operation of arity
at least 2 is onto. Then A is a subreduct of a sesmimodule over a
commutative semiring.

Entropic polyquasigroups without constants satisfy assumptions of
the previous theorem.
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Approach through semimodules, continued

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.
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Approach through semimodules, continued

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Let A be cancellative and entropic

V.
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Approach through semimodules, continued

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Proof.

Let A be cancellative and entropic

| \

@ Case when A has constants falls into earlier Theorem, so we
assume that A does not have any constant

V.
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Approach through semimodules, continued

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Let A be cancellative and entropic

@ Case when A has constants falls into earlier Theorem, so we
assume that A does not have any constant

@ We embed A into an entropic polyquasigroup B

V.
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Approach through semimodules, continued

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Let A be cancellative and entropic

@ Case when A has constants falls into earlier Theorem, so we
assume that A does not have any constant

@ We embed A into an entropic polyquasigroup B

© Next embed B into a semimodule N over a commutative
semiring

V.
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Approach through semimodules, continued

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Let A be cancellative and entropic

@ Case when A has constants falls into earlier Theorem, so we
assume that A does not have any constant

@ We embed A into an entropic polyquasigroup B

© Next embed B into a semimodule N over a commutative
semiring

@ One may prove that, by cancellativity of B, the sesmimodule N
is +-cancellative and thus

V.
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Approach through semimodules, continued

Main Theorem

Each cancellative entropic algebra is a subreduct of a module over
a commutative ring.

Proof.

Let A be cancellative and entropic

| \

@ Case when A has constants falls into earlier Theorem, so we
assume that A does not have any constant

@ We embed A into an entropic polyquasigroup B

© Next embed B into a semimodule N over a commutative
semiring

@ One may prove that, by cancellativity of B, the sesmimodule N
is +-cancellative and thus

© embeds into a module over a commutative ring

V.
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The End

Thank you for your attention :-)
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